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a b s t r a c t

Most rumors in social networks are extremely harmful and have a significant negative
impact on social welfare. Therefore, exploring the laws of rumor propagation has
been one of the hot topics in current researches. Most traditional rumor spreading
models are based on infectious disease transmission models, such as SIR. Since the
influence of individual differences and the network structure on rumor spreading are not
considered, the rumor propagation process in complex networks can only be described
in a coarse-grained manner. In this paper, we consider the role of different users in
rumor propagation. Based on the degree of different nodes in the network, we design a
new state transition function for each node and proposed a new rumor propagation
ILSR model. Firstly, we analyze the model, calculate the equilibrium point and the
basic reproductive number to prove the rationality of the model. Then experiments
are performed in WS networks, BA scale-free networks and a real Facebook network to
investigate the relationship between various nodes with time and the impact of network
structure on rumor propagation, and the experimental results show the correctness and
effectiveness of the model. It provides a reference for exploring the propagation law of
rumors in complex networks and guiding and controlling the propagation of rumors.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Rumor usually refers to the unconfirmed elaboration of public concerns, issues and events related to public interests
by various means of dissemination [1]. With the rapid development of the Internet, the Online Social Network (OSN)
has penetrated into every aspect of people’s production and life. However, a series of rumors that it breeds are eroding
people’s daily lives, impacting the normal life of the Internet and society. Compared with rumors in daily society, rumors
in cyberspace spread faster, have a wider range of influence, and have more uncontrollable factors. Therefore, the study
of rumor propagation laws in complex networks represented by social networks has positive significance for the control
of rumor [2].
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Most of the traditional models for analyzing information transmission are based on dynamics models of infectious
diseases, such as SI (Susceptible–Infected), SIS (Susceptible–Infected–Susceptible), SIR (Susceptible–Infected–Removed)
and so on. Researchers in different fields have made corresponding improvements to these models based on their
research scenarios. For instance, Witbooi et al. [3] proposed a random SEIR epidemiological model that demonstrates the
exponential stability theorem that almost determines disease-free balance. Liu et al. [4] proposed the standard incidence
of random SIRS epidemiological models, [5–8] based on SIS, SIR compartmental model to study the spread of epidemics.
These results indicate the effectiveness of the SIR compartmental model in epidemiological research, and provide a rich
theoretical basis for alleviating the epidemic of infectious diseases and predicting the development trend of infectious
diseases. The spread of online rumors is similar to the spread of infectious diseases. Therefore, the infectious disease
dynamics model is also widely used in rumor propagation analysis on social networks, such as propagation modeling
of rumors, tracing of information, etc. Wan et al. [9] presented an improved rumor propagation model, defined as the
Spreader–Ignorant–Eliminate–Rstifler–Estifler (SIERsEs) model. Based on the microscopic Markov chain approach, Zheng
et al. [10] build the probability tree to describe the switching process between different states, and Li et al. [11] proposed
a model of SIQR for the problem of invalid isolation of virus or rumor propagation. The exponential separation of rumor
propagation time between two variants is studied, and the propagation law of rumors between informed and uninformed
users is analyzed [12]. However, most of the model studies of analytic rumors are based on uniform networks. A large
number of studies have demonstrated that social networks in reality are complex networks with small worlds and scale-
free features [13–15]. The mean-field approach based on the SIR model over-simplifies the process of rumor propagation,
so it can only describe the process of rumor propagation of online social networks in a coarse-grained manner. SIR
model assumes that the propagation probability among network nodes is equal in unit time, and the characteristics
of social networks are not fully considered, so it is inconsistent with the propagation characteristics of actual social
networks [16–18]. In order to better understand the mechanism of rumor propagation, it is helpful to study the rumor
propagation and explore the model and structure in complex networks. Sun et al. [19] considered real-world rumor
propagation characteristics and influencing factors, and introduced rumor acceptable functions to describe the propagation
rates of distinct nodes. Singh et al. [20] considered that the correlation between degree and degree has a considerable
influence on the rumor propagation in real-world networks, and the propagation law of rumors is studied in the scale-
free network. Considering that exposed nodes may become removed nodes at a certain rate, Liu et al. [21] analyzed
the SEIR rumor propagation model in heterogeneous networks. The impact of community size heterogeneity and the
intensity of community structure on the dynamic behavior of rumor communication has also been analyzed [22]. Because
individuals in complex networks have different understandings of specific rumors, individual characteristics are also taken
into account [23,24]. Network rumors are deeply analyzed in social networks represented by small world networks and
scale-free networks, which indicate that the degree distribution, heterogeneity and distance distribution of nodes have
different effects on rumor propagation [25,26].

Previous studies have conducted in-depth analysis of rumors in complex networks, but different users have different
levels of rational knowledge in social networks, and there are differences in their understanding of specific rumor fields.
Therefore, considering such differences, their role in the spread of rumors is different, and the rates of transmission and
recovery of rumors are also different [23]. Based on the above discussion, we propose a new rumor spreading ILSR model,
and combine the existing research methods for improving the SIR model to analyze the model. Further, considering the
complexity of the actual social network structure, in the complex network, we redefined the conversion functions of
transmission rate, infection rate and recovery rate for each node based on the different degrees of nodes to make ILSR
model more reasonable and effective. Finally, simulation experiments are carried out in WS small world networks, BA
scale-free networks and an actual Facebook social network, which verify the rationality of the model and reveal the
network topology and the actual impact of different nodes on rumor propagation.

The paper is organized as follows. In Section 2, we introduce some traditional models based on SIR model to
study rumor propagation, and explain the shortcomings of the model for research rumor in the complex network. In
Section 3, we present a new rumor spreading ILSR model and introduce different propagation mechanisms of the model
in homogeneous network and complex network. In Section 4, simulation experiments in the regular network, SW small
world network, BA scale-free network and a real network are performed to test and verify the analysis results. Finally,
conclusions are given in Section 5.

2. Traditional model

Cyberspace rumors emerge in endlessly, and their influence is becoming ever more serious. Facing this phenomenon,
the majority of scholars began to conduct detailed modeling research on the propagation law of rumors. Most current
rumor propagation models are built on infectious disease models.

SIR is a classical model of infectious disease, which divides the population into three groups, S(Susceptible), I(Infected),
and R(Removed). If an individual has effective contact with other individuals in unit time (enough contact to cause
virus transmission, i.e. Susceptible and Infected), the probability of transmitting the virus is β , and the probability of
the individual being cured within unit time is γ . The SIR(Susceptible–Infected–Removed) model shown in Fig. 1 can be
established.
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Fig. 1. Infectious disease SIR model.

Fig. 2. ILSR rumor propagation model.

The mean-field equations of the SIR model are defined as follow:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= −βS(t)I(t)

dI(t)
dt

= βS(t)I(t) − γ I(t)

dR(t)
dt

= γ I(t)

(1)

The SIR(Susceptible–Infected–Removed) model is suitable for infectious diseases that are lifelong immunity after
rehabilitation. Although the model is simple, it has gained very valuable concepts and conclusions. It introduces a
parameter σ = β/γ to indicate the average number of contacts that the infected person has during the infection. If
σS0 ≤ 1, when t → ∞, i(t) decreases to 0, indicating that the infectious disease has disappeared. If σS0 > 1, i(t) first
increases to the maximum peak and then gradually decreases to zero. It can be observed that the final state of the SIR
model is non-infected, indicating that there is no susceptible person and infection, all of them are recovered, and the
infectious diseases eventually disappeared.

It has been used by many researchers to study the process of information dissemination in social networks. A person
who is easy to spread information is affected by a spreader and then becomes a spreader. For some reason, the spreader
stops spreading the information and becomes a removal. The conversion parameters β and γ in the process are statistically
based probabilities, and the state conversion rates of all users are the same, which does not combine the influence of
individual differences on information dissemination. Although researchers have considered different factors to improve
the SIR model, they hope to establish a more reasonable compartment model (such as SEIR model, Susceptible–Exposed–
Infected–Removed) to describe the spread of rumors in the network. However, due to the complexity of social network
topology and the numerous factors affecting information transmission, those models are unable to describe the way of
information transmission in social networks, which are far from the actual situation [22,23].

3. ILSR model

3.1. Model description

In order to better describe the law of rumor propagation in model social networks, we propose an ILSR (Ignorant–
Lurker–Spreader–Removal) rumor propagation model. In the ILSR model, we divide the people in the social network into
four groups: I (Ignorant, who has never been exposed to rumors, and may believe rumors), L (Lurker, who has heard the
rumors, but Skeptical, temporarily not spreading rumors), S (Spreader, who believe in rumors, and spread rumors in the
network with a certain probability), R (Removal, who identify this information as false information or lose interest in
rumors, no longer participate the spread of rumors). I(t), L(t), S(t) and R(t) respectively represent the proportion of the
population in these four groups at time t, then

I(t) + L(t) + S(t) + R(t) = 1 (2)

The transition process of the four states is shown as Fig. 2.
As shown in Fig. 2, the laws of the ILSR model and their expressions can be summarized as follows: (a) When an

ignorant contacts with a spreader, the ignorant will become a lurker with probability α1 or a spreader with probability
α2 due to the user’s own situation. The lurkers do not spread rumors, and the spreaders will spread rumors. (b) when
a lurker contacts a spreader, the lurker will become the spreader with probability β and begin to spread rumors.
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(c) when a spreader contacts a removal, the spreader will become the removal with probability δ and stop to spread ru-
mors.
(d) the total number of users is still kept constant regardless of factors such as increase, decrease, and flow of users.

According to the node state transition process described in Fig. 2, the following differential dynamics equation of rumor
propagation can be established.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dI(t)
dt

= −α1I(t)S(t) − α2I(t)S(t)

dL(t)
dt

= α2I(t)S(t) − βL(t)

dS(t)
dt

= α1I(t)S(t) + β(t)L(t) − δS(t)

dR(t)
dt

= δS(t)

(3)

The initial condition of Eq. (3) is {(I, L, S, R) |I, L, S, R ≥ 0 and I + L + S + R = 1}.

3.2. Model analysis in homogeneous network

The ILSR model of Eq. (3) is analyzed, and the equilibrium point of the model is calculated to prove the validity of the
model.⎧⎪⎨⎪⎩

−α1I(t)S(t) − α2I(t)S(t) = 0
α2I(t)S(t) − βL(t) = 0
α1I(t)S(t) + βL(t) − δS(t) = 0
δS(t) = 0

(4)

Let x = (I, L, S, R)T , then, the system (3) can be written as x′
= F (X) − V (X), where

F (x) =

⎡⎢⎣α2IS
α1IS
0
0

⎤⎥⎦ , V (x) =

⎡⎢⎣ βL
−βL + δS

α1IS + α2IS
−δS

⎤⎥⎦ (5)

The Jacobian matrices of F (x) and V (x) at the non-toxic equilibrium point P0 are

F = DF (P0) =

[
0 α2I∗
0 α1I∗

]
(6)

V = DV (P0) =

[
β 0

−β δ

]
(7)

then

FV−1
=

[
0 α2I∗
0 α1I∗

]
∗

⎡⎢⎣ δ

β
0

1
δ

1
δ

⎤⎥⎦ =

⎡⎢⎣α2I∗

δ

α2I∗

δ
α1I∗

δ

α1I∗

δ

⎤⎥⎦ (8)

Let
⏐⏐FV−1

− λE
⏐⏐ = 0, then

⏐⏐FV−1
− λE

⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐⏐
α2I∗

δ
− λ

α2I∗

δ
α1I∗

δ

α1I∗

δ
− λ

⏐⏐⏐⏐⏐⏐⏐⏐ = 0 (9)

and there

R0 = ρ(FV−1) =
α1 + α2

δ
I∗ (10)

When R0 < 1, there is no rumor after the system is stable, on the contrary, there are still rumors in the system.
In order to verify the correctness of the conclusions obtained, ILSR model was numerically simulated.
Fig. 3 shows the trend of the proportion of the four groups in the ILSR model over time. The initial condition is that

there is only one rumor spreader in the network, so S(0) = 0.0001, I(0) = 0.9999, L(0) = 0 and R(0) = 0. As can be
viewed, when the spreader starts to spread rumors, its number will increase rapidly. With the further spread of rumors,
the number of spreaders reaches the maximum peak, then decreases, and finally the number of spreader is zero, which
indicates that the rumor stops spreading. The number of lurkers also increases to a peak, then decreases and finally
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Fig. 3. Proportions of Ignorant(I), Lurker(L), Spreader(S), Removal(R) over time with α1 = 0.6, α2 = 0.4, β = 0.15, δ = 0.1.

Fig. 4. Some solutions of the model with certain given parameters. α1 = 0.6, α2 = 0.4, β = 0.15, δ = 0.1.

disappears. In the end, only removals exist in this model. Because the propagation threshold parameter R0 = 0 in this
initial condition, the system no longer has rumors, which show the correctness of our analysis results.

Fig. 4 shows the influence of different initial S(0) on rumor propagation results. The initial condition is that the
proportion of rumor spreaders S(0) ranges from 0.10 to 0.61, I(0) = 1 − S(0), L(0) = 0 and R(0) = 0. It can be seen that
after the system is stable, the value of I(t), L(t) and S(t) eventually converges to (I, L, S) = (0, 0, 0), which indicates that
the number of lurkers and spreaders is zero. Therefore, different initial conditions do not affect the number of spreaders
after the system stabilizes. There will be no lurkers and spreaders in the system, and the rumor will eventually disappear.

3.3. Model analysis in complex networks

In the first two subsections, we analyzed the ILSR model, and the results of the simulation experiments show that
the rumors will eventually disappear. However, in the real social network, the complex network topology will affect
the spread of rumors. In addition, different individuals have different roles in the rumor propagation process, and the
influence of individual differences on rumor propagation should be considered. When a person hears a rumor, based on
his own understanding of the existing knowledge, he may spread the rumor, or he may not spread it, and remain lurking.
If he chooses to be a lurker, when there are many people around him spreading the rumor, he will become a spreader
with a greater probability to spread the rumor. Similarly, depended upon their own subjective judgments, the probability
that different people stop spreading rumors is different. Therefore, we divide users into important users (rich knowledge,
strong immunity to rumors, better recognition of rumors, generally do not easily disseminate information) and ordinary
users (relatively lacking knowledge, easy to blindly believe others). Based on the above discussion, we re-analyze ILSR
rumor propagation model in a complex network. Real people are regarded as nodes in the network, and the connection
between users is regarded as the edges of nodes. Based on the degree of each node, a new node state transition function
is designed to make the model more reasonable.
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The average degree of the network is k. If the degree of node i is greater than the average degree k, node i is considered
as an important node, otherwise, it is an ordinary node. When a normal node i is affected by the spreader j, the node
i changes from the ignorant to a lurker or a spreader is determined by the relationship between its degree ki and the
average degree k. If ki > k, node i becomes a lurker, the lurker does not spread rumors, and conversely, node i becomes a
spreader, and begins to spread rumors. In addition, an important spreader becomes a removal with a greater probability
than a normal node.

Therefore, the state transition function of each node is defined as follows:
In a complex network, the degree set of nodes is

kΩ = {k1, k2, k3, . . . , ki, kj, . . . , kn} (11)

so the average of the nodes is

k =

∑
i∈Ω ki
N

(12)

where, k is the average degree, Ω is the node set of the network, and N is the total number of nodes.
A spreader node i spreads rumors to a ignorant node j, and the probability that node j becomes a lurker or a spreader

is defined as:

αf (kj)(i, j) = 1 −
kj∑

r∈τ (i) kr
(13)

f (kj) =

{
1, kj ≤ k
2, kj > k

(14)

where, τ (i) represents the neighbor node set of node i, and kj represents the degree of node j. According to the degree
of affected node j, the values of conversion rates α1 and α2 can be calculated. It can be concluded that the probability of
spreading rumors for each node is different. Compared to the homogeneous network, individual differences are considered,
which is more consistent with the actual situation of social networks.

After a lurker j is affected by a spreader i, the probability that its state changes from a lurker to a spreader is

β(i, j) =
ki

ki + kj
(15)

It can be seen that it is more difficult for ordinary nodes to spread rumors to important nodes, and vice versa.
The probability that a spreader i becomes a removal is defined as

δ(i) =
ki +

∑
r∈ζ (i) kr

ki +
∑

j∈τ (i) kj
(16)

where, τ (i) is the set of neighbor nodes of node i, and ξ (i) represents the node set of removals in the neighbor of node
j. It can be seen that the recovery rate of the rumor spreader i is related to both itself and the neighbors. The greater
the degree of node i, the more removals in the neighbor nodes, the more likely it becomes a removal to stop spreading
rumors.

The above transition function can be illustrated by a simple example in Fig. 5.
As shown in Fig. 5, the total node of the network is 11 and the average degree is 3. there are four groups of all nodes,

including I, L, S and R. The rumor propagation process includes nine stages. At each time, the state transition of the node
is as follows:

t1: Node 1 is a rumor spreader in the network, spreads rumors to neighbor nodes 2, 3, 4 and 6. According to Eq. (13),
the propagation probability of each node can be calculated, α2(1, 2) = 11/18, α1(1, 3) = 15/18. Because node 2 has a
larger degree, it has a lower probability to accept and spread rumors.

t2: Node 1 successfully spreads rumors to nodes 3, 4 and 6 with different probabilities. Because the degree of these
nodes is less than the average degree k (see Eq. (14)), they all become spreaders.

t3: Nodes 2 and 7 are affected by the spreader. Because k2 > k, node 2 becomes a lurker and does not spread rumors.
On the contrary, k7 < k, node 7 becomes a spreader and begin to spread rumors.

t4: Node 2 is affected by multiple nodes. According to Eq. (15), β(1, 2) = 5/12, β(3, 2) = 3/10, β(6, 2) = 3/10,
β(7, 2) = 2/9. Finally, node 2 is converted from a lurker to a spreader.

t5: Nodes 8 and 9 are both converted to spreaders, while node 5 is converted from a spreader to a removal by
probability δ(5) = 3/13 (see Eq. (16)).

t6: Node 10 is converted to a spreader. Meanwhile, nodes 4 and 6 are converted to removals with probabilities
δ(4) = 5/10 and δ(6) = 6/11 respectively.

t7–t9: At these moments, the probability of node transition is calculated in a similar way. Finally, all nodes in the
process become removals and stop spreading rumors.

However, the network topology will affect the spread of rumors, so rumors spread in the network has many different
results. For example, at time t3 and time t6, rumor spreading may appear as showed in Fig. 6.
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Fig. 5. An example of a rumor spreading process. N = 11, k = 3.09.

Fig. 6. Other results of rumor spread at times t3 and t6.

Case1: One other case of rumor spread at time t3. Nodes 1, 3, 4, 5, 6 and 7 are removal, node 2 is a lurker, and the other
nodes are ignorant. In the end, the rumor will stop spreading, but there are still ignorants and lurkers in the network.

Case2: One other case of rumor spread at time t6. Node 11 is an ignorant, and others are removals. However, there
are still ignorants in the network.

In the SEIR model, the state transition process of susceptible nodes is S(Susceptible) → E(Exposed) → I(Infected), but
in ILSR model, the state of an ignorant can be I(Ignorant) → L(Lurker), or I(Ignorant) → S(Spreader). Because in real
life, people with weak ability to distinguish information are more likely to spread directly, there will be no lurk phase,
and a strong ability to distinguish rumor information is more likely to be suspicious, become a lurker, and delay the
dissemination of this information. Therefore, the population classification and node state transfer process of the SEIR
model and the ILSR model are different.

Besides, we divide users by an average degree k, which does not mean that 50% of users are important users, and
50% of users are ordinary users. Since the actual network is mostly sparse, so only a small number of nodes are divided
into important nodes, and the proportion of important users and ordinary users divided by the ILSR model is closer to
the 80/20 law (Pareto’s principle, or the Bale Law), which is similar to the situation of fewer important nodes in social
networks.

To sum up, compared with the mean-field approach to analysis rumor spreading, the ILSR model considers the
differences of individuals and the influence of network topology on rumor spreading.

4. Experimental results and analysis

In this section, we simulate the spread of rumors in several different networks. These networks include regular
network, WS network, BA scale-free network, and ego-Facebook network collected on Facebook social networks [27].
We obtained it from the Stanford large network dataset collection (http://snap.stanford.edu/data/).

http://snap.stanford.edu/data/
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Table 1
Networks information.

Nodes Edges Density Average clustering
coefficient

Regular Network 1 1000 2 500 0.0050 0.0047
Regular Network 2 5000 20 000 0.0016 0.0015
WS Network 1 1000 2 000 0.0040 0.2993
WS Network 2 5000 15 000 0.0012 0.3750
BA scale-free Network 1 1000 1 996 0.0039 0.0344
BA scale-free Network 2 5000 89 676 0.0072 0.0285
ego-Facebook 4039 88 234 0.0108 0.6055

Fig. 7. Regular Network, WS network and BA scale-free Network of 26 nodes.

The information of several networks includes the number of nodes, the number of edges, the density of the network,
and the average clustering coefficient. The information is shown in Table 1.

It can be seen from Table 1 that the number of nodes of the Regular Network 1, the WS Network 1 and the BA
scale-free Network 1 is 1000, and there are differences in other information of the network because of the different
network structures. The number of nodes of the Regular Network 2, the WS Network 2, and the BA scale-free Network
2 is 5000. Ego-Facebook, a social network from Facebook, has 4039 nodes. The structure of several networks is shown in
Fig. 7.

In order to verify the correctness of our analysis results, rumor spreading simulation was performed in the above
networks. The initial network S(0) = 1, I(0) = N − S(0), L(0) = 0, R(0) = 0. The conversion rates α1, α2, β and δ of each
node are dynamically calculated based on the network structure.

The experimental results are shown in Figs. 8, 9, and 10.
Fig. 8 shows the trend of the number of I(t), L(t), S(t) and R(t) of the ILSR model over time in Regular Network 1, WS

Network 1, and BA scale-free Network 1. In Regular Network 1, because all nodes are of the same degree, it is impossible to
distinguish between important nodes and ordinary nodes. In the whole spreading process, the number of lurkers L(t) = 0.
The number of ignorants is decreasing slowly, and spreaders increases to the peak and then decreases. As can be seen from
the partial enlargement, finally I(t) and S(t) are zero, all nodes become removals, and there is no rumor spreading in the
network. In the WS Network 1, because the degree of nodes is different, the number of lurkers and spreaders has reached
different peaks in the process of rumor propagation, and then gradually decreased. However, it can be seen from the
partial enlarged detail that there are still ignorants and lurkers, indicating that the topology of the network has affected
the results of the rumor spreading. In the BA scale-free Network 1, the results are similar to the WS Network 1, and there
are still a few of ignorants and lurkers. It shows that compared with the existing analytical rumors on the homogeneous
network, the ILSR model can effectively reflect the influence of individual differences and the actual network structure
on the results of rumors.

Fig. 9 shows the trend of the number of I(t), L(t), S(t) and R(t) of the ILSR model over time in Regular Network 2,
WS Network 2, and BA scale-free Network 2. In Regular Network 2, the maximum value of S(t) is significantly increased,
indicating that as the number of nodes increases, the range of rumors affects significantly. As can be seen from the partial
enlargement, there are still some lurkers in the final results of the WS Network 2. In BA scale-free Network 2, due to
the special network structure, the peak value of the propagator tends to 1.0, indicating that the rumor has the widest
influence range. All the above results show that the topology of the network will affect the spread of rumors, which is
consistent with the results of our analysis.

Fig. 10 shows the results of the rumor spread on ego-Facebook from the Facebook social network. As can be seen,
compared with the previous network, the curve of the spreader has an obvious change in the upward trend, first
increasing, then decreasing, and then sharply increasing to the maximum. When t = 7, the number of spreaders reaches
the first peak, and then decreases, because the rumor spreading is affected by the structure of the network, which leads to
a decrease in the rate of rumor propagation. As the propagation continues, the number of spreaders will eventually reach
the maximum peak. Similarly, the number of lurkers also changes frequently. After several increases and decreases, there
are still a few lurkers in the network. It also shows that the rumor propagation process in the real network is extremely



A. Yang, X. Huang, X. Cai et al. / Physica A 531 (2019) 121807 9

Fig. 8. Rumor spreading in Regular Network 1, WS network 1 and BA scale-free Network 1. S(0) = 1, N = 1000.

Fig. 9. Rumor spreading in Regular Network 2, WS network 2 and BA scale-free Network 2. S(0) = 1, N = 5000.
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Fig. 10. Rumor spreading in ego-Facebook. S(0) = 1, N = 4039.

Fig. 11. The maximum ratio of lurkers and spreaders in different networks.

complex. The rumor analysis model based on the mean-field approach cannot depict such a complex propagation process,
while the ILSR model can more realistically reflect the propagation law of rumors in the real world.

In order to further illustrate the changes in the number of lurkers and spreaders during the propagation process,
several experiments were performed to record the maximum ratio of different L(t) and S(t) at the end of the propagation,
as shown in Fig. 11.

Fig. 11 shows ten experiments in the WS Network 2, BA scale-free Network 2 and ego-Facebook network, and we
recorded the maximum ratio of lurkers and spreaders. It can be seen that in the BA scale-free Network 2, the number
of lurkers and spreaders is the highest, while in the WS Network 2 is the lowest. In the ego-Facebook Network, the
number is between the first two. It can also be obtained that the initial values of the three networks are the same, the
experimental results of several simulation rumor propagation are quite different. In WS Network 2, the maximum of S(t)
is relatively stable, ranging from 0.4 to 0.6, and, the maximum of S(t) is close to 1.0 in BA scale-free Network 2. However,
the maximum of L(t) and S(t) in ego-Facebook network is relatively vary widely. Considering the complexity of the real
network topology, it is relatively difficult to predict the influence of rumor propagation.

In different networks, we tested the number of different initial spreaders and compared the influences of S(0) = 1,
S(0) = 10 and S(0) = 100 on rumor propagation. The experimental results are shown in Fig. 12.

Fig. 12 shows the influence of different initial conditions on rumor propagation. It can be seen that when S(0) = 100,
the time taken for S(t) to reach the peak in different networks becomes shorter. When S(0) = 1, S(t) took the longest time
to reach the peak, especially in WS Network 2 and ego-Facebook network. In addition, there is no significant increase in
the number of L(t) and S(t) in WS Network 2 and BA scale-free Network 2. However, in the ego-Facebook network, as the
number of initial spreaders increases, the S(t) of increases significantly, which indicates that in the actual network, the
large-scale outbreak of rumors will accelerate the spread of rumors, and the number of people affected will also increase.

As shown in Fig. 13, the influence of initial rumors occurring on large nodes or small nodes on rumor propagation is
analyzed.

Fig. 13 shows the trend of the number of L(t) and S(t) over time for the initial S(0) = 10 at nodes with large nodes
and small nodes in WS Network 2, BA scale-free Network 2, and ego-Facebook network. Compared to nodes with small
nodes, rumors occurring on nodes with large nodes, and the process of spreading accelerates, but the maximum peaks
of lurkers and spreaders do not change significantly. Therefore, it is necessary to supervise and control the propagation
state of the large nodes to achieve the purpose of slowing down and controlling the spread of rumors in real life.
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Fig. 12. Influence of different initial spreaders on rumor propagation.

Fig. 13. The results of rumor occurring on large nodes and small nodes.
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5. Conclusion

In this paper, in order to analyze the propagation law of rumors in complex networks, based on the existing research,
we present a new ILSR rumor propagation model. Considering the different characteristics of different individuals’
understanding and judgment of rumors, we divide users into important users and ordinary users, and combine them
based on the network’s degree. We calculated the equilibrium point of the model and the basic reproductive number
and verified the correctness of our analysis results. Furthermore, we re-analyzed the model and designed a new state
transition function based on the degree of different nodes to study the propagation law of rumors in complex networks.
The model is validated by simulation experiments on the regular network, WS network, BA scale-free network, and a
real network collected from Facebook. In different networks, we set up different comparative experiments, such as the
influence of different numbers of Spreaders, the results of different degrees of nodes on rumor propagation, and analyzed
the law of the change of different groups with time. The experimental results show that compared with the existing
mean-field approach, the model can better describe the propagation process of rumors in complex networks. In order to
understand the law of the spread of network rumors in the social network and study the factors affecting the process of
the spread of rumors, it provides a reference for guiding and controlling the spread of network rumors.
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